University of Pittsburgh Pittsburgh, PA

Institute of NanoScience and Engineering

Hong Koo Kim, PhD, Co-Director, kim@engr.pitt.edu
David Snoke, PhD, Co-Director, snoke@pitt.edu

CORE FACILITIES

RESEARCH PROJECTS

ABOUT THE INSTITUTE

SYNTHESIS

Facilities are available for organic/inorganic materials synthesis and processing, such as crystalline colloidal assembly, nanoparticles, nanosized tubes, pores, wires and ribbons (carbon, oxide, semiconductor, metal, polymer, etc.)

FABRICATION

Extensive facilities are available, starting from wafer cleaning to micro/nanoscale fabrication, integration and packaging, including thin-film deposition (CVD, MBE, sputter, PVD), UV holographic lithography, photolithography (Karl Suss MJB3 and MA/BA6 with backside alignment), wet and dry etching (Unaxis ICP-RIE), oxidation/annealing, and packaging.

CHARACTERIZATION

A broad spectrum of analysis/characterization instruments and techniques are available including: atomic force microscopes (Digital Instruments D3100 with electrochemical and phase imaging capabilities, DI multimode, and Asylum MFP-3D), atom probe field ion microscope, apertureless near-field infrared scanning microscopes, time-resolved photoemission electron microscope, scanning tunneling microscopes (VT-STM), nano-workbench (4-tip STM probe combined with SEM), time-resolved UV Raman spectroscopy, TEM (JEOL 200CX and 2000FX STEM with EDS and EELS), SEM (Philips XL-30 field emission with EDS, EBSP and OIM), XRD (Philips X'pert), MFM, DLTS, FTIR, TGA, etc.

COMPUTATIONAL

The facilities are for research and education in the use of computational methods in the design and characterization of new molecules and materials. The core facilities include: 50-processor IBM RS6000 Power3 computer cluster with a gigabit Ethernet connection for parallel calculations for modeling complex systems, 32-processor Pentium III cluster and 38-processor Athlon cluster, and three HP Itanium 2 computers for large memory/large disk applications.

Nanosystems-on-a-chip based on nanochannel arrays formed with directed self-assembly

Excitons in semiconductor nanostructures

Nanoscale oxidation processes on metal and semiconductor surfaces

The Institute's vision is to solve large, complex scientific and engineering challenges in this burgeoning field by facilitating interdisciplinary teams drawn from the faculty in the School of Engineering, Arts and Sciences and the Schools of Health Sciences, and to educate the next generation of scientists through a world-class integrated program of innovative knowledge generation. The Institute was established by the University in 2002, and currently over 30 faculty members perform various research in nanoscience and engineering, funded by federal government, state and industry. The Institute also serves the industrial interests by forming in dustrial partner groups and seeking opportunities for sharing discoveries with the commercial sector.

Chemistry of carbon nanotubes and nanomanipulation (nano-workbench)

Apertureless nearfield scanning infrared microscopy for identifying the chemical composition of nanostructures

Nanomechanics of oxide nanobelts

-

Ultrafast time-resolved electron

microscopy of nanostructured

electronic materials

Hydrogen storage in carbon nanotubes

Laser-control of electron transport

through molecular wires

Colloids for optical switching, memories and chemical sensors

Nanotribology: Molecular interlayers and abrasive wear

Nanophotonic devices on nanostructured wafers

1000)

Nanotube and nanorod self-assembly

Water in nanoscale channels and electronic properties of nanoscale devices

Bacterial nanomachines

Tissue engineering, cardiovascular biomaterials

Bone tissue engineering

